添加 数据预处理
This commit is contained in:
		
							
								
								
									
										147
									
								
								数据预处理
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										147
									
								
								数据预处理
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,147 @@ | ||||
| import pandas as pd | ||||
| from pymongo import MongoClient | ||||
| import numpy as np | ||||
| from datetime import datetime | ||||
| from concurrent.futures import ThreadPoolExecutor | ||||
| import statsmodels.api as sm | ||||
| # 数据库连接配置 | ||||
| config = { | ||||
|     'host': 'www.bldcapital.cn', | ||||
|     'port': 27217, | ||||
|     'username': 'ZhangZH', | ||||
|     'password': 'S$#r)JAHE_2C', | ||||
|     'authSource': 'Alpha101',  # 指定认证数据库 | ||||
|     'authMechanism': 'SCRAM-SHA-1'  # 指定认证机制 | ||||
| } | ||||
| client = MongoClient(**config) | ||||
| client.admin.command('ping') | ||||
| print("成功连接到MongoDB服务器")   | ||||
| db = client['Alpha101'] | ||||
| #取中证500只 | ||||
| stocklist = pd.read_csv("C:/Users/86185/Desktop/实习/500stock.csv")   | ||||
| # 提取 "Stock Code" 列,转成列表 | ||||
| selected = stocklist['Stock Code'].tolist() | ||||
|  | ||||
| START = datetime(2020, 1, 1) | ||||
| END   = datetime(2021, 1, 1) | ||||
| projection={ | ||||
|     '_id':0, | ||||
|     'alpha004':1, | ||||
|     'time':1 | ||||
|     } | ||||
| def fetch(code: str) -> pd.DataFrame: | ||||
|     cur = db[code].find({'time': {'$gte': START, '$lt': END}}, projection) | ||||
|     df = pd.DataFrame(list(cur)) | ||||
|     df['Code'] = code | ||||
|     return df | ||||
|  | ||||
| with ThreadPoolExecutor(max_workers=32) as pool: | ||||
|     dfs = list(pool.map(fetch, selected)) | ||||
|  | ||||
| # 合并 | ||||
| df_all = pd.concat(dfs, ignore_index=True) | ||||
| df_all['time'] = pd.to_datetime(df_all['time'])  # 转日期类型 | ||||
| df_all_ = df_all.pivot(index='Code', columns='time', values='alpha004') | ||||
| df_all_.info() | ||||
| #---------------------去极值------------------------- | ||||
| def extreme_3sigma(dt,n=3): | ||||
|  | ||||
|     mean = dt.mean()           # 截面数据均值 | ||||
|     std = dt.std()             # 截面数据标准差 | ||||
|     dt_up = mean + n*std       # 上限 | ||||
|     dt_down = mean - n*std     # 下限 | ||||
|     return dt.clip(dt_down, dt_up, axis=1)   # 超出上下限的值,赋值为上下限 | ||||
|  | ||||
| df1=extreme_3sigma(df_all_,3) | ||||
| print('step1 finished') | ||||
| #---------------------标准化------------------------- | ||||
| def standardize_z(dt): | ||||
|     mean = dt.mean()     #  截面数据均值 | ||||
|     std = dt.std()       #  截面数据标准差 | ||||
|     return (dt - mean)/std     # 标准化处理 | ||||
|  | ||||
| df2 = standardize_z(df1) | ||||
| print('step2 finished') | ||||
| #----------------------3.行业中性化-------------------------- | ||||
| #1生成行业哑变量矩阵 | ||||
| def generate_industry_dummy_matrix(csv_file_path): | ||||
|     # 从 CSV 文件中读取数据 | ||||
|     industry= pd.read_csv(csv_file_path) | ||||
|     # 获取所有唯一的股票代码和行业名称 | ||||
|     unique_stocks = industry['code'].unique() | ||||
|     unique_industries = industry['industry_name'].unique() | ||||
|     # 创建一个全 0 的 DataFrame 作为初始的哑变量矩阵 | ||||
|     dummy_matrix = pd.DataFrame(0, index=unique_stocks, columns=unique_industries) | ||||
|     # 遍历每一行数据,将对应股票在其所属行业的位置赋值为 1 | ||||
|     for index, row in industry.iterrows(): | ||||
|         stock = row['code'] | ||||
|         industry = row['industry_name'] | ||||
|         dummy_matrix.loc[stock, industry] = 1 | ||||
|     return dummy_matrix | ||||
| dummy_matrix= generate_industry_dummy_matrix('C:/Users/86185/Desktop/实习/industry.csv') | ||||
| ##取股票交集 | ||||
| market=pd.read_csv('C:/Users/86185/Desktop/实习/market.csv') | ||||
| market.set_index(market.columns[0], inplace=True) | ||||
| common_stocks = list( | ||||
|     set(df2.index) &  | ||||
|     set(dummy_matrix.index)& | ||||
|     set(market.index) | ||||
| ) | ||||
| # 筛选三个数据框,仅保留共同的股票 | ||||
| df2_f= df2.loc[common_stocks].copy() | ||||
| industry_f = dummy_matrix.loc[common_stocks].copy() | ||||
| market_f = market.loc[common_stocks].copy().astype(float) | ||||
| #2实现行业中性化 | ||||
| def neutralization(factor, industry_matrix): | ||||
|     Y = factor | ||||
|     df= pd.DataFrame(index=Y.index, columns=Y.columns) | ||||
|     # 按日期循环进行行业中性化 | ||||
|     for i in range(Y.shape[1]): | ||||
|         # 获取当天的因子值(删除缺失值) | ||||
|         y = Y.iloc[:, i].dropna()         | ||||
|         # 获取对应的行业哑变量(并确保与 y 索引一致) | ||||
|         X = industry_matrix.loc[y.index]      | ||||
|         # 添加常数项 | ||||
|         X = sm.add_constant(X)      | ||||
|         # 执行线性回归 | ||||
|         try: | ||||
|             result = sm.OLS(y, X).fit() | ||||
|             # 保存残差(即行业中性化后的因子值) | ||||
|             df.loc[y.index, Y.columns[i]] = result.resid | ||||
|         except Exception as e: | ||||
|             print(f"日期 {Y.columns[i]} 中性化失败: {e}") | ||||
|             # 失败时保留原始值或填充 NaN | ||||
|             df.loc[y.index, Y.columns[i]] = y     | ||||
|     return df | ||||
| df3=neutralization(df2_f, industry_f) | ||||
| print('step3 finished') | ||||
| #----------------------4.市值中性化-------------------------- | ||||
| def neutralization_size(factor, market_cap): | ||||
|     Y = factor.astype(float) | ||||
|     df= pd.DataFrame(index=Y.index, columns=Y.columns)     | ||||
|     for i in range(Y.shape[1]): | ||||
|         # 获取当天的因子值(删除缺失值) | ||||
|         y = Y.iloc[:, i].dropna() | ||||
|         # 获取当天的市值并计算对数(删除缺失值和非正数) | ||||
|         ln_mkt_cap = np.log(market_cap.iloc[:, i]) | ||||
|         ln_mkt_cap = ln_mkt_cap.replace([np.inf, -np.inf], np.nan).dropna() | ||||
|         # 确保市值和因子的股票索引一致 | ||||
|         common_idx = list(set(y.index).intersection(set(ln_mkt_cap.index))) | ||||
|         y = y.loc[common_idx] | ||||
|         ln_mkt_cap = ln_mkt_cap.loc[common_idx] | ||||
|         # 添加常数项 | ||||
|         X = sm.add_constant(ln_mkt_cap) | ||||
|         # 执行线性回归 | ||||
|         try: | ||||
|             result = sm.OLS(y, X).fit() | ||||
|             # 保存残差(即市值中性化后的因子值) | ||||
|             df.loc[common_idx, Y.columns[i]] = result.resid | ||||
|         except Exception as e: | ||||
|             print(f"日期 {Y.columns[i]} 中性化失败: {e}") | ||||
|             # 失败时保留原始值或填充 NaN | ||||
|             df.loc[common_idx, Y.columns[i]] = y | ||||
|      | ||||
|     return df | ||||
| df4=neutralization_size(df3, market_f) | ||||
| df4.to_csv('df4.csv') | ||||
| print('step4 finished') | ||||
		Reference in New Issue
	
	Block a user