import pandas as pd from pymongo import MongoClient import numpy as np from datetime import datetime from concurrent.futures import ThreadPoolExecutor import statsmodels.api as sm # 数据库连接配置 config = { 'host': 'www.bldcapital.cn', 'port': 27217, 'username': 'ZhangZH', 'password': 'S$#r)JAHE_2C', 'authSource': 'Alpha101', # 指定认证数据库 'authMechanism': 'SCRAM-SHA-1' # 指定认证机制 } client = MongoClient(**config) client.admin.command('ping') print("成功连接到MongoDB服务器") db = client['Alpha101'] #取中证500只 stocklist = pd.read_csv("C:/Users/86185/Desktop/实习/500stock.csv") # 提取 "Stock Code" 列,转成列表 selected = stocklist['Stock Code'].tolist() START = datetime(2020, 1, 1) END = datetime(2021, 1, 1) projection={ '_id':0, 'alpha004':1, 'time':1 } def fetch(code: str) -> pd.DataFrame: cur = db[code].find({'time': {'$gte': START, '$lt': END}}, projection) df = pd.DataFrame(list(cur)) df['Code'] = code return df with ThreadPoolExecutor(max_workers=32) as pool: dfs = list(pool.map(fetch, selected)) # 合并 df_all = pd.concat(dfs, ignore_index=True) df_all['time'] = pd.to_datetime(df_all['time']) # 转日期类型 df_all_ = df_all.pivot(index='Code', columns='time', values='alpha004') df_all_.info() #---------------------去极值------------------------- def extreme_3sigma(dt,n=3): mean = dt.mean() # 截面数据均值 std = dt.std() # 截面数据标准差 dt_up = mean + n*std # 上限 dt_down = mean - n*std # 下限 return dt.clip(dt_down, dt_up, axis=1) # 超出上下限的值,赋值为上下限 df1=extreme_3sigma(df_all_,3) print('step1 finished') #---------------------标准化------------------------- def standardize_z(dt): mean = dt.mean() # 截面数据均值 std = dt.std() # 截面数据标准差 return (dt - mean)/std # 标准化处理 df2 = standardize_z(df1) print('step2 finished') #----------------------3.行业中性化-------------------------- #1生成行业哑变量矩阵 def generate_industry_dummy_matrix(csv_file_path): # 从 CSV 文件中读取数据 industry= pd.read_csv(csv_file_path) # 获取所有唯一的股票代码和行业名称 unique_stocks = industry['code'].unique() unique_industries = industry['industry_name'].unique() # 创建一个全 0 的 DataFrame 作为初始的哑变量矩阵 dummy_matrix = pd.DataFrame(0, index=unique_stocks, columns=unique_industries) # 遍历每一行数据,将对应股票在其所属行业的位置赋值为 1 for index, row in industry.iterrows(): stock = row['code'] industry = row['industry_name'] dummy_matrix.loc[stock, industry] = 1 return dummy_matrix dummy_matrix= generate_industry_dummy_matrix('C:/Users/86185/Desktop/实习/industry.csv') ##取股票交集 market=pd.read_csv('C:/Users/86185/Desktop/实习/market.csv') market.set_index(market.columns[0], inplace=True) common_stocks = list( set(df2.index) & set(dummy_matrix.index)& set(market.index) ) # 筛选三个数据框,仅保留共同的股票 df2_f= df2.loc[common_stocks].copy() industry_f = dummy_matrix.loc[common_stocks].copy() market_f = market.loc[common_stocks].copy().astype(float) #2实现行业中性化 def neutralization(factor, industry_matrix): Y = factor df= pd.DataFrame(index=Y.index, columns=Y.columns) # 按日期循环进行行业中性化 for i in range(Y.shape[1]): # 获取当天的因子值(删除缺失值) y = Y.iloc[:, i].dropna() # 获取对应的行业哑变量(并确保与 y 索引一致) X = industry_matrix.loc[y.index] # 添加常数项 X = sm.add_constant(X) # 执行线性回归 try: result = sm.OLS(y, X).fit() # 保存残差(即行业中性化后的因子值) df.loc[y.index, Y.columns[i]] = result.resid except Exception as e: print(f"日期 {Y.columns[i]} 中性化失败: {e}") # 失败时保留原始值或填充 NaN df.loc[y.index, Y.columns[i]] = y return df df3=neutralization(df2_f, industry_f) print('step3 finished') #----------------------4.市值中性化-------------------------- def neutralization_size(factor, market_cap): Y = factor.astype(float) df= pd.DataFrame(index=Y.index, columns=Y.columns) for i in range(Y.shape[1]): # 获取当天的因子值(删除缺失值) y = Y.iloc[:, i].dropna() # 获取当天的市值并计算对数(删除缺失值和非正数) ln_mkt_cap = np.log(market_cap.iloc[:, i]) ln_mkt_cap = ln_mkt_cap.replace([np.inf, -np.inf], np.nan).dropna() # 确保市值和因子的股票索引一致 common_idx = list(set(y.index).intersection(set(ln_mkt_cap.index))) y = y.loc[common_idx] ln_mkt_cap = ln_mkt_cap.loc[common_idx] # 添加常数项 X = sm.add_constant(ln_mkt_cap) # 执行线性回归 try: result = sm.OLS(y, X).fit() # 保存残差(即市值中性化后的因子值) df.loc[common_idx, Y.columns[i]] = result.resid except Exception as e: print(f"日期 {Y.columns[i]} 中性化失败: {e}") # 失败时保留原始值或填充 NaN df.loc[common_idx, Y.columns[i]] = y return df df4=neutralization_size(df3, market_f) df4.to_csv('df4.csv') print('step4 finished')