Files
coding/数据预处理
2025-07-25 14:42:38 +08:00

147 lines
5.5 KiB
Plaintext

import pandas as pd
from pymongo import MongoClient
import numpy as np
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
import statsmodels.api as sm
# 数据库连接配置
config = {
'host': 'www.bldcapital.cn',
'port': 27217,
'username': 'ZhangZH',
'password': 'S$#r)JAHE_2C',
'authSource': 'Alpha101', # 指定认证数据库
'authMechanism': 'SCRAM-SHA-1' # 指定认证机制
}
client = MongoClient(**config)
client.admin.command('ping')
print("成功连接到MongoDB服务器")
db = client['Alpha101']
#取中证500只
stocklist = pd.read_csv("C:/Users/86185/Desktop/实习/500stock.csv")
# 提取 "Stock Code" 列,转成列表
selected = stocklist['Stock Code'].tolist()
START = datetime(2020, 1, 1)
END = datetime(2021, 1, 1)
projection={
'_id':0,
'alpha004':1,
'time':1
}
def fetch(code: str) -> pd.DataFrame:
cur = db[code].find({'time': {'$gte': START, '$lt': END}}, projection)
df = pd.DataFrame(list(cur))
df['Code'] = code
return df
with ThreadPoolExecutor(max_workers=32) as pool:
dfs = list(pool.map(fetch, selected))
# 合并
df_all = pd.concat(dfs, ignore_index=True)
df_all['time'] = pd.to_datetime(df_all['time']) # 转日期类型
df_all_ = df_all.pivot(index='Code', columns='time', values='alpha004')
df_all_.info()
#---------------------去极值-------------------------
def extreme_3sigma(dt,n=3):
mean = dt.mean() # 截面数据均值
std = dt.std() # 截面数据标准差
dt_up = mean + n*std # 上限
dt_down = mean - n*std # 下限
return dt.clip(dt_down, dt_up, axis=1) # 超出上下限的值,赋值为上下限
df1=extreme_3sigma(df_all_,3)
print('step1 finished')
#---------------------标准化-------------------------
def standardize_z(dt):
mean = dt.mean() # 截面数据均值
std = dt.std() # 截面数据标准差
return (dt - mean)/std # 标准化处理
df2 = standardize_z(df1)
print('step2 finished')
#----------------------3.行业中性化--------------------------
#1生成行业哑变量矩阵
def generate_industry_dummy_matrix(csv_file_path):
# 从 CSV 文件中读取数据
industry= pd.read_csv(csv_file_path)
# 获取所有唯一的股票代码和行业名称
unique_stocks = industry['code'].unique()
unique_industries = industry['industry_name'].unique()
# 创建一个全 0 的 DataFrame 作为初始的哑变量矩阵
dummy_matrix = pd.DataFrame(0, index=unique_stocks, columns=unique_industries)
# 遍历每一行数据,将对应股票在其所属行业的位置赋值为 1
for index, row in industry.iterrows():
stock = row['code']
industry = row['industry_name']
dummy_matrix.loc[stock, industry] = 1
return dummy_matrix
dummy_matrix= generate_industry_dummy_matrix('C:/Users/86185/Desktop/实习/industry.csv')
##取股票交集
market=pd.read_csv('C:/Users/86185/Desktop/实习/market.csv')
market.set_index(market.columns[0], inplace=True)
common_stocks = list(
set(df2.index) &
set(dummy_matrix.index)&
set(market.index)
)
# 筛选三个数据框,仅保留共同的股票
df2_f= df2.loc[common_stocks].copy()
industry_f = dummy_matrix.loc[common_stocks].copy()
market_f = market.loc[common_stocks].copy().astype(float)
#2实现行业中性化
def neutralization(factor, industry_matrix):
Y = factor
df= pd.DataFrame(index=Y.index, columns=Y.columns)
# 按日期循环进行行业中性化
for i in range(Y.shape[1]):
# 获取当天的因子值(删除缺失值)
y = Y.iloc[:, i].dropna()
# 获取对应的行业哑变量(并确保与 y 索引一致)
X = industry_matrix.loc[y.index]
# 添加常数项
X = sm.add_constant(X)
# 执行线性回归
try:
result = sm.OLS(y, X).fit()
# 保存残差(即行业中性化后的因子值)
df.loc[y.index, Y.columns[i]] = result.resid
except Exception as e:
print(f"日期 {Y.columns[i]} 中性化失败: {e}")
# 失败时保留原始值或填充 NaN
df.loc[y.index, Y.columns[i]] = y
return df
df3=neutralization(df2_f, industry_f)
print('step3 finished')
#----------------------4.市值中性化--------------------------
def neutralization_size(factor, market_cap):
Y = factor.astype(float)
df= pd.DataFrame(index=Y.index, columns=Y.columns)
for i in range(Y.shape[1]):
# 获取当天的因子值(删除缺失值)
y = Y.iloc[:, i].dropna()
# 获取当天的市值并计算对数(删除缺失值和非正数)
ln_mkt_cap = np.log(market_cap.iloc[:, i])
ln_mkt_cap = ln_mkt_cap.replace([np.inf, -np.inf], np.nan).dropna()
# 确保市值和因子的股票索引一致
common_idx = list(set(y.index).intersection(set(ln_mkt_cap.index)))
y = y.loc[common_idx]
ln_mkt_cap = ln_mkt_cap.loc[common_idx]
# 添加常数项
X = sm.add_constant(ln_mkt_cap)
# 执行线性回归
try:
result = sm.OLS(y, X).fit()
# 保存残差(即市值中性化后的因子值)
df.loc[common_idx, Y.columns[i]] = result.resid
except Exception as e:
print(f"日期 {Y.columns[i]} 中性化失败: {e}")
# 失败时保留原始值或填充 NaN
df.loc[common_idx, Y.columns[i]] = y
return df
df4=neutralization_size(df3, market_f)
df4.to_csv('df4.csv')
print('step4 finished')